8. Air Quality

8.1 Introduction

The Ringaskiddy Resource Recovery Centre will have one furnace and flue gas cleaning line. The line will have a moving grate furnace with a state-of-the-art flue gas cleaning system.

The combustion of waste produces a number of emissions, the discharges of which are regulated by the EU Directive on Industrial Emissions (IED) (2010/75/EU). The emissions to atmosphere which have been regulated are:

- Nitrogen Dioxide (NO₂)
- Sulphur Dioxide (SO₂)
- Total Dust (although there is no regulated Total Dust standard, standards exist for PM₁₀ and PM_{2.5} (particulate matter less than 10 and 2.5 microns respectively))
- Carbon Monoxide (CO)
- Total Organic Carbon (TOC)
- Hydrogen Fluoride (HF) and Hydrogen Chloride (HCl)
- Dioxins/Furans (PCDD/PCDFs)
- Cadmium (Cd) & Thallium (Tl)
- Mercury (Hg)
- and the sum of Antimony (Sb), Arsenic (As), Lead (Pb), Chromium (Cr), Cobalt (Co), Copper (Cu), Manganese (Mn), Nickel (Ni) and Vanadium (V)

The effect of the pollutants outlined above has been assessed in this chapter of the EIS in addition to any potential construction phase emissions.

In addition, Ammonia (NH₃) and Polycyclic Aromatic Hydrocarbons (PAHs) have been assessed as incineration is a potential emission source for this group of compounds.

The scope of the evaluation of the potential effects on air quality arising from the proposed development consists of the following components:

- Review of maximum emission levels and other relevant information needed for the modelling study
- Review of construction phase potential emissions
- Identification of the significant substances which are released from the proposed development
- Review of background ambient air quality in the vicinity of the proposed development including an
 extensive baseline survey which was carried out in the region of the proposed development over the
 period August 2024 January 2025. This data supplements the extensive baseline surveys undertaken in
 November 2006 to February 2007, from April 2008 to July 2008, from August 2014 to July 2015 and
 October 2018 to January 2019
- Air dispersion modelling of significant substances released from the proposed development
- Particulate deposition modelling of Dioxins & Furans, Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals released from the proposed development
- Identification of predicted ground level concentrations of released substances at the proposed development boundary and at sensitive receptors in the immediate environment

- The potential cumulative effects of the proposed development on air quality in combination with other relevant planned or permitted development in the area
- Evaluation of the significance of these predicted concentrations, including consideration as to whether ground level concentrations are likely to exceed the applicable stringent ambient air quality standards and guidelines

8.1.1 Modelling Under Maximum & Abnormal Operating Conditions

In order to assess the potential effect from the proposed development under maximum and abnormal operations, a conservative approach was adopted that is designed to "over-predict" ground level concentrations. This cautious or conservative approach will ensure that an over-estimation of effects will occur and that the resultant emission standards adopted are stringent in their protection of ambient air quality. The approach incorporated several conservative assumptions regarding operating conditions at the proposed development. This approach incorporated the following features:

- For the maximum operating scenario, it has been assumed that the emission point is continuously operating at its maximum operating volume flow. This will over-estimate the actual mass emissions from the proposed development
- For the maximum operating scenario, it has been assumed that the emission point is operating at its maximum emission concentration for 24-hrs/day over the course of the full year
- Abnormal operating emissions were obtained from the process engineer and are pessimistically assumed to occur as outlined below:
 - NO_X 400 mg/m³ for 3% of the year (11 days per annum)
 - SO_2 200 mg/m³ for 3% of the year (11 days per annum)
 - Total Dust 30 mg/m³ for 3% of the year (11 days per annum)
 - TOC 30 mg/m³ for 3% of the year (11 days per annum)
 - HCl 60 mg/m³ for 3% of the year (11 days per annum)
 - HF 4 mg/m³ for 3% of the year (11 days per annum)
 - CO 200 mg/m³ for 5% of the year (18 days per annum)
 - Dioxins & Furans 0.5 ng/m³ for 3% of the year (11 days per annum)
 - Heavy Metals (other than Hg, Cd & Tl) 30 mg/m³ for 3% of the year (11 days per annum)
 - Cd & Tl 0.2 mg/m³ for 3% of the year (11 days per annum)
 - Hg 1 mg/m³ for 3% of the year (11 days per annum)

As a result of these conservative assumptions, there will be an over-estimation of the emissions from the proposed development and the effect of the proposed development on human health and the surrounding environment.

8.2 Assessment Methodology

8.2.1 Modelling Study Methodology

The air dispersion modelling input data consists of detailed information on the physical environment (including building dimensions and terrain features), design details from all emission points on-site and a full year of worst-case meteorological data. Using this input data, the model predicts ambient ground level concentrations beyond the site boundary for each hour of the modelled meteorological year. The model post-processes the data to identify the location of the maximum ambient ground level concentration in the applicable format for comparison with the relevant limit values. This maximum concentration is then added to the existing background concentration to give the maximum predicted ambient concentration.

The maximum ambient concentration is then compared with the relevant ambient air quality standard for the protection of human health to assess the significance of the releases from the proposed development.

In the absence of detailed guidance in Ireland, the selection of appropriate modelling methodology has followed the guidance from the USEPA which has issued detailed and comprehensive guidance on the selection and use of air quality models⁽¹⁻³⁾.

Based on guidance from the USEPA, the most appropriate regulatory model for the current application is the AERMOD model (Version 24142). The model is applicable in both simple and complex terrain, urban or rural locations and for all averaging periods⁽³⁾. The terrain data for the region of the proposed development was obtained from the US Jet Propulsion Laboratory Shuttle RADAR Topography Mission (SRTM) at 1 arcsecond (30m) resolution and imported into the model using the AERMOD terrain pre-processor AERMAP (see **Figure 8.3**). An overview of the model is outlined in **Appendix 8.2**.

The selection of the urban/rural classification is based on the land use procedure of Auer⁽⁴⁾ as recommended by the USEPA⁽¹⁾. An examination of the land-use type around the proposed development site indicated that the rural boundary layer was appropriate.

The AERMOD model is capable of modelling most meteorological conditions likely to be encountered in the region. However, unusual meteorological conditions may occur infrequently, which may not be modelled adequately using AERMOD. One such condition is fumigation which occurs when a plume is emitted into a stable layer of air which subsequently mixes to ground level through either convective transfer of heat from the surface or because of advection to less stable surroundings⁽¹⁾. A screening air dispersion model AERMET was used to assess this infrequent scenario (full details are outlined in **Appendix 8.1**).

8.2.2 Meteorological Considerations

Meteorological data is an important input into the air dispersion model. The local airflow pattern will be influenced by the geographical location. Important features will be the location of hills and valleys or landwater-air interfaces and whether the proposed development site is located in simple or complex terrain.

The selection of the appropriate meteorological data has followed the guidance issued by the USEPA⁽¹⁾. A primary requirement is that the data used should have a data capture of greater than 90% for all parameters. One synoptic meteorological station operated by Met Éireann was identified near the proposed development site – Cork Airport. Data collection of greater than 90% for all parameters is required for air dispersion modelling. Cork Airport fulfils this requirement.

Cork Airport meteorological station is in a region of gentle rolling terrain and is located 12 km from the proposed development site. The meteorological data used in the appraisal (2020 - 2024) is the most recent dataset available for this station. The final issue relates to the exposure of the meteorological monitoring site and specifically relating to the surface characteristics of the station compared to the site of the proposed development. Cork Airport is 12km from the coast and located in an area of mainly agricultural land with urban characteristics to the north of the airport. In contrast, Ringaskiddy is in a coastal area with a range of surface characteristics including water, agricultural and urban within a few kilometres of the proposed development site. Thus, some differences in surface characteristics are apparent between the meteorological station at Cork Airport and the proposed development site location. In order to ascertain the likely significance of the difference in surface characteristics, a sensitivity study was conducted as shown in **Appendix 8.5.** Secondly, a weather station was installed on-site which measured wind speed, wind direction, temperature and relative humidity over the period starting in October 2006 and finished at the end of December 2007. This station allowed the similarities and differences between Cork Airport and the proposed development site to be identified. The long-term weather data from Met Eireann covering the period 1991 – 2020, which includes the period October 2006 – December 2007, was reviewed in order to ascertain whether the onsite monitored weather data remains representative of existing meteorological conditions. It was concluded that the data is still expected to be representative of the study area. The on-site meteorological data was used in the AERMOD modelling study and in the CALPUFF modelling study as detailed in Section 8.3.2.3 of Appendix 8.1.

The windrose from Cork Airport for the years 2020 - 2024 is shown in **Figure 8.4** with detailed data outlined in **Appendix 8.2**. The windrose indicates the prevailing wind speed and direction over the five-year period.

The prevailing wind direction is generally from the S-NW direction, with generally moderate wind speeds, averaging around 5 m/s.

8.2.3 Background Concentrations

The ambient concentrations detailed in the following sections include both the emissions from the proposed development site and the ambient background concentration for that substance. Background concentrations have been derived from a conservative analysis of the existing background air quality and an analysis of cumulative sources in the region in the absence of the proposed development. A detailed baseline air quality assessment (Section 8.4 of Appendix 8.1) was carried out to assess background levels of those pollutants, which are likely to be released from the proposed development. Appropriate background values have been outlined in Section 8.4 of Appendix 8.1, and Table 8.1 below. In arriving at the combined annual background concentration, cognisance has been taken of the accuracy of the approach and the degree of double counting inherent in the assessment. In relation to NO₂, PM₁₀, PM_{2.5} and benzene, the baseline monitoring programme took into account both the existing traffic levels and existing industrial sources. However, some increases in traffic levels will occur due to the proposed development which has been incorporated into the final combined background levels. Again, in recognition of the various inaccuracies in this approach, the values have been rounded accordingly. A similar approach has been adopted for the other pollutants. In addition, modelling of cumulative sources has been undertaken with the effect of the cumulative sources added to the background concentration. The cumulative sources modelled were Janssen Biologics, Hovione Cork, Thermo Fisher Scientific Ireland Ltd, ESB Aghada, Recordati Ltd, Sterling Pharma Ringaskiddy Ltd, Pfizer Ireland Pharmaceuticals and BGE Whitegate. These facilities are licensed by the EPA under the Industrial Emissions Directive (IED) and are referred to as 'IE Licenced facilities'. These IE Licensed facilities were selected using the methodology for cumulative assessments as outlined in the EPA guidance document "Air Dispersion Modelling from Industrial Installations" (5).

In order to obtain the predicted environmental concentration (PEC), background data was added to the process emissions. In relation to the annual averages, the ambient background concentration was added directly to the process concentration whilst the short-term averages used double the annual mean background concentration to add to the process emissions.

8.2.4 Cumulative Assessment

As the region around Ringaskiddy is partly industrialised and thus has several other potentially significant sources of pollutants, a detailed cumulative assessment of other industrial emission sources has been carried out using the methodology outlined by the USEPA. The effect of nearby air emission points sources (Janssen Biologics, Hovione Cork, Thermo Fisher Scientific Ireland Ltd, ESB Aghada, Recordati Ltd, Sterling Pharma Ringaskiddy Ltd, Pfizer Ireland Pharmaceuticals and BGE Whitegate) has been examined where interactions between the plume of the point source under consideration and those of nearby sources can occur. These include:

- the area of maximum effect of the point source
- the area of maximum effect of nearby sources
- the area where all sources combine to cause maximum effect on air quality⁽¹⁾

Background concentrations for the area, based on natural, minor and distant major sources need also to be taken into account in the modelling procedure. A major baseline monitoring programme (see Section 8.3) was undertaken over several months which, in conjunction with other available baseline data, was used to determine worst-case background concentrations in the region (Table 8.1). Full detail of the cumulative effect assessment of the proposed development and all relevant nearby air emission point sources and associated results can be seen in Appendix 8.4.

Air modelling of road emissions associated with the proposed development have also been undertaken and added to the existing worst-case background pollutant levels. Cumulative effects due to nearby relevant projects as outlined in **Section 8.8** have been included in both the "do-nothing" and "do-something" scenario as outlined in **Appendix 8.3**. The traffic assessment included all the relevant forecasted traffic volumes due to the existing and proposed developments which are outlined in **Section 8.8** *Cumulative Effects*.

DePuy Ireland, which is located approximately 400m south of the proposed stack location, has a wind turbine onsite with a diameter of 101m. The turbine has been in operation since 2014. A wind turbine, when in operation, has the potential to interact with the plume as the plume passes the region of the turbine. The implications of this have been assessed in **Appendix 8.7**. The assessment found that the difference in the maximum concentrations at the worst-case receptor at ground level for the years modelled are not significantly affected by the wind turbine. The maximum difference in the "With" and "Without" scenarios for the 1-hour results (measured as a 99.8^{tho}/oile) was a difference of 4.3% of the 1-hour limit value whilst annual mean results agreed within 1.1% of the limit value. All other turbines in the region are at a significantly greater distance from the proposed development and will have an insignificant interaction with the plume.

The risk to helicopters from the plume has been assessed in **Chapter 16 Section 16.3.1.5**. The study supporting this assessment is included in **Appendix 8.8** and investigated the changes to oxygen, temperature and vertical velocity with distance from the stack top. The study confirmed that any risk from the Ringaskiddy RCC plume will be confined to within 14m of the stack tip, which is well within the 150m safety zone identified by the Department of Defence dated 11th May 2016 and thus will not impact on the Air Corps operations.

8.2.5 Ambient Air Quality Standards

The relevant ambient air quality standards are outlined in **Table 8.2** below. Ambient air quality legislation designed to protect human health and the environment is generally based on assessing ambient air quality at locations where the exposure of the population is significant, relevant to the averaging time of the pollutant. However, in the current assessment, ambient air quality legislation has been applied to all locations with a 10km radius of the facility regardless of whether any sensitive receptors (such as residential locations) are present for significant periods of time. This represents a worst-case approach and an examination of the corresponding concentrations at the nearest sensitive receptors relative to the actual quoted maximum concentration indicates that these receptors generally experience ambient concentrations significantly lower than that reported for the maximum value.

8.3 Baseline Environment

An extensive baseline survey was carried out in the region of the proposed development over the period August 2024 – January 2025. This data supplements the extensive baseline surveys undertaken in November 2006 to February 2007, from April 2008 to July 2008, from August 2014 to July 2015, October 2018 to January 2019 and June 2019 – September 2019. These surveys focused on the significant pollutants likely to be emitted from the proposed development and which have been regulated in Council Directive 2010/75/EU. The substances monitored over these survey periods were NO₂, NO_x, PM₁₀, PM_{2.5}, benzene, SO₂, heavy metals, HCl, HF and PCDDs/PCDFs. The air monitoring program was used to determine long-term average concentrations for these pollutants in order to help quantify the existing ambient air quality in the region. NO₂, benzene and SO₂ were also monitored at a number of additional locations to give some spatial representation of the levels of these species.

The updated extensive baseline survey which was carried out in the region of the proposed development over the period August 2024 – January 2025 focused on NO₂, PM₁₀, PM_{2.5}, benzene and SO₂ (as shown in **Figure 8.1** and **8.2**). The air monitoring programme was used to determine long-term average concentrations for these pollutants in order to help quantify the existing ambient air quality in the region. NO₂, benzene and SO₂ were also monitored at a number of additional locations to give greater spatial representation of the levels of these species.

Full details of the monitoring methodology, assessment and results are outlined in **Section 8.4** of **Appendix 8.1**.

Ambient NO₂, SO₂, benzene, PM₁₀ and PM_{2.5} were measured for an approximate 6-month period from August 2024 – January 2025), to account for seasonal variations in these pollutants.

The NO_2 monitoring was carried out using passive diffusion tubes. The average NO_2 concentration measured over the six-month period at each of the 16 diffusion tube monitoring locations ranged from 4.0-10.3 $\mu g/m^3$, which is between 10% - 26% of the EU annual limit value of $40~\mu g/m^3$.

The SO_2 diffusion tube concentrations measured over the six-month survey period are below the annual EU limit value of $20~\mu g/m^3$ for the protection of vegetation. The average SO_2 concentration measured over the six-month period at each location ranged from $1.6-2.8~\mu g/m^3$ which is between 8%-14% of the EU annual limit value of $20~\mu g/m^3$.

The benzene diffusion tube concentrations measured over the six-month survey period are below the annual EU limit value of 5 μ g/m³ for the protection of human health. The average benzene concentration measured over the six-month period at each location ranged from $0.20-0.38~\mu$ g/m³ which is between 4% - 8% of the EU annual limit value of 5 μ g/m³.

The 24-hour PM_{10} concentrations measured using a continuous Osiris light scattering monitor over the sixmonth monitoring period are below the 24-hour EU limit value of $50 \mu g/m^3$ and there were no exceedances of the 24-hour limit value recorded. The annualised average PM_{10} concentration is 9.4 $\mu g/m^3$ which is only 23% of the EU annual limit value of $40 \mu g/m^3$.

The annualised average PM_{2.5} concentration is 5.7 μ g/m³ which is below the annual average EU limit value of 25 μ g/m³.

HF / HCl, heavy metals and PCDD/PCDFs were measured over the period October 2018 – January 2019. The HF and HCl diffusion tube concentrations measured over the three-month survey period are well below the UK EALs⁽⁶⁾. The average HF concentration measured over the three-month period is $0.32 \,\mu\text{g/m}^3$, which is only 2% of the annual limit value of $16 \,\mu\text{g/m}^3$. The average HCl concentration measured over the three-month monitoring period is $2.21 \,\mu\text{g/m}^3$ which is 11% of the annual limit value of $20 \,\mu\text{g/m}^3$.

The average concentrations of antimony (Sb), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), thallium (Tl) and vanadium (V) were significantly below their respective annual limit values, with average levels reaching only 0.04% - 47% of these limits.

Background levels of PCDD / PCDFs cannot be compared to ambient air quality concentration or deposition standards. However, levels of PCDDs and PCDFs can be compared to existing levels measured sporadically in Ireland and continuously in the UK as part of the TOMPS network. The mean PCDD/PCDF concentration measured over the period October 2018 – January 2019 indicates that results are in line with measurements conducted elsewhere in Ireland, with an upper limit of 29.8 fg/m 3 compared to previous measurements ranging from 2.8-46 fg/m 3 .

In summary, baseline ambient concentrations are in compliance with the ambient air quality standards which are based on the protection of the environment and human health.

8.4 Characteristics of the Proposed Development

8.4.1 Construction Phase

There is the potential for a number of emissions to the atmosphere during the construction phase of the proposed development. In particular, the construction activities may generate quantities of dust in the immediate region of the construction activities and along the route of the haulage trucks.

8.4.2 Operational Phase

Council Directive 2010/75/EU on Industrial Emissions Directive (IED) has established air emission limit values as set out in **Table 8.3**. The Directive has also outlined stringent operating conditions in order to ensure sufficient combustion of waste thus ensuring that dioxin formation is minimised. Specifically, combustion gases must be maintained at a temperature of 850°C for at least two seconds under normal operating conditions for non-hazardous waste whilst for hazardous waste containing more than 1% halogenated organic substances, the temperature should be raised to 1,100°C for at least two seconds. These measures will ensure that dioxins/furans, polychlorinated biphenyls (PCBs) and PAHs are minimised through complete combustion of waste.

Emissions from the proposed development have been modelled using the AERMOD dispersion model which is the USEPA's regulatory model used to assess pollutant concentrations associated with industrial sources⁽¹⁾.

Emissions have been assessed, firstly under maximum emissions limits of the EU Directive 2010/75/EU and secondly under abnormal operating conditions.

The proposed development has one main process emission point (flue). The operating details of this major emission point are outlined in **Table 8.4**. Full details of emission concentrations and mass emissions are given in **Appendix 8.6**.

In order to assess the potential effect from the proposed development under maximum and abnormal operations, a conservative approach was adopted that is designed to over-predict ground level concentrations. This cautious approach will ensure that an over-estimation of effects will occur and that the resultant emission standards adopted are protective of ambient air quality. The approach incorporated several conservative assumptions regarding operating conditions at the proposed facility. This approach incorporated the following features:

- Emissions from all emission points in the assessment were assumed to be operating at their maximum emission level, 24 hours/day over the course of a full year. This represents a very conservative approach as typical emissions from the proposed facility will be well within the emission limit values set out in the Industrial Emissions Directive.
- Maximum predicted ambient concentrations for all pollutants within a 10 km radius of the proposed development site were reported in this study even though, in many cases, no residential receptors were near the location of this maximum ambient concentration. Concentrations at the nearest residential receptors are generally significantly lower than the maximum ambient concentrations reported.
- Conservative background concentrations were used to assess the baseline levels of substances released from the proposed development site. The background concentrations include the existing and proposed contribution from traffic sources in the region. As outlined in **Appendix 8.3**, air modelling of road traffic air emissions due to the operation of the proposed development, existing road traffic sources and future proposed road traffic sources are included in the road traffic air emission modelling.
- Meteorological conditions leading to the highest ambient ground level concentrations, over the period 2020 2024 from Cork Airport and the on-site meteorological data from 2007, have been used in all assessments. For all averaging periods the year giving the highest ambient ground level concentration from 2007, 2020 2024 was used for comparison with the ambient air quality standards.

Table 8.1 Estimated annual background concentrations in the region of Ringaskiddy (µg/m³)

	NO ₂	NO _X	SO ₂	PM ₁₀	PM _{2.5}	СО	TOC ⁽²⁾	нсі	HF	NH ₃	Dioxins ⁽¹⁾	B(a)P	Cd	Hg	As	V	Ni
Baseline Monitoring Program - 2018 – 2019 and 2024 - 2025	8	11	3	9.4	5.7	-	1	2.2	0.32	-	0.030 pg/m ³	-	0.001	0.008	0.001	0.002	0.009
Annual Background Concentration - Year 2025	8	11	3	9.4	5.7	450	1	2.2	0.32	1.9	0.030 pg/m ³	0.54 ng/m ³	0.001	0.008	0.001	0.002	0.009
Facility Traffic - Year 2030 ⁽³⁾	0.4	0.8	-	0.05	0.05	0.005	0.005	-	-	1.9	-	-	-	-	-	-	-
Cumulative Assessment	1.5	2.0	_(4)	_(4)	_(4)	_(4)	_(4)	_(4)	_(4)	_(4)	0.001 pg/m ³	_(4)	_(4)	_(4)	_(4)	_(4)	_(4)
Annual Background & Facility Traffic Concentration (Year 2023)	10	14	3	10	6	500	1.0	2.2	0.32	1.9	0.031 pg/m ³	0.54 ng/m ³	0.001	0.008	0.001	0.002	0.009

^{1.} Dioxins reported as non-detects as equal to the limit of detection.

^{2.} Assumed to consist solely of benzene as a worst-case.

^{3.} Derived using the Tii REM screening model (see Appendix 8.3).

^{4.} No other significant source in the region.

Table 8.2 Ambient Air Quality Standards

Emission	Limit/Guideline	EU 2024/2881 (μg/m³)	UK EAL (μg/m³)	WHO 2000 (μg/m³)	
NO ₂	99.97 th percentile of 1- Hourly Averages	200			
NO ₂	95.1st percentile of 24- Hourly Averages	50			
NO ₂	Annual Average	20			
NO _x	Annual Average(1)	30			
SO ₂	99.97th percentile of 1- Hourly Averages	350			
SO ₂	95.1st percentile of 24- Hourly Averages	50			
SO ₂	Annual Average	20			
SO ₂	Annual Average ⁽¹⁾	20			
PM ₁₀	95.1st percentile of 24- Hourly Averages	45			
PM ₁₀	Annual Average	20			
PM _{2.5}	95.1st percentile of 24- Hourly Averages	25			
PM _{2.5}	Annual Average	10			
СО	Maximum 8-hr (on a rolling basis)	10			
СО	95.1st percentile of 24- Hourly Averages	4			
TOC	Annual Average	3.4 ⁽²⁾			
HCl	Maximum 1- Hour Average		800		
HC1	Annual Average		20		
HF	Maximum 1- Hour Average		160		
HF	Annual Average		16		
NH ₃	Maximum 1- Hour Average		2500		
NH ₃	Annual Average		180		
PCDD/PCDF ⁽³⁾	Annual Average				
Benzo[a]pyrene	Annual Average	0.001			
Hg	Annual Average			1.0	
Cd & Tl	Annual Average (Cd)	0.005			
	Annual Average (Pb)	0.50			
	Hourly Average (Sb)		150		
Sum of 9 Heavy Metals	Annual Average (As)	0.006			
	Hourly Average (As)		15		
	Hourly Average (Cr) (Total)		3.0		

Annual Average (Cr(VI))		0.0002	
Hourly Average (Co)		6.0	
Hourly Average (Cu)		60	
Annual Average (Mn)			1.0
Annual Average (Ni)	0.020		
Hourly Average (Ni)		30	

- 1. Critical level for the protection of vegetation.
- 2. Limit value is for Benzene as a worst-case.
- 3. There are no air quality standard limit values for dioxins and furans. The WHO currently proposes a maximum TDI of between 1-4 pgTEQ/kg of body weight per day. A TDI of 4 pgTEQ/kg of body weight per day should be considered a maximal tolerable intake on a provisional basis and that the ultimate goal is to reduce human intake levels of below 1 pgTEQ/kg of body weight per day.

Table 8.3 Council Directive 2010/75/EU, Annex V Air Emission Limit Values

Daily Average Values	Concentration (Normalised (dry, 11%O ₂ , 273K, 1013kPa))				
Total Dust	10 mg/m ³				
Gaseous & vaporous organic substances expressed as total organic carbon (TOC)	10 mg/m ³				
Hydrogen Chloride (HCl)	10 mg/m ³				
Hydrogen Fluoride (HF)	1 mg/m ³				
Sulphur Dioxide (SO ₂)	50 mg/m ³				
Nitrogen Oxides (as NO ₂)	200 mg/m ³				
Half-hourly Average Values	Concentration				
	(100%)	(97%)			
Total Dust ⁽¹⁾	30 mg/m ³	10 mg/m ³			
Gaseous & vaporous organic substances expressed as total organic carbon (TOC)	20 mg/m ³	10 mg/m ³			
Hydrogen Chloride (HCl)	60 mg/m ³	10 mg/m ³			
Hydrogen Fluoride (HF)	4 mg/m ³	2 mg/m ³			
Sulphur Dioxide (SO ₂)	200 mg/m ³	50 mg/m ³			
Nitrogen Oxides (as NO ₂)	400 mg/m ³	200 mg/m ³			
Average Value Over 30 mins to 8 Hours	Concentration ⁽²⁾				
Cadmium and its compounds, expressed as Cd	Total 0.05 mg/m ³				
Thallium and its compounds, expressed as Tl					
Mercury and its compounds, expressed as Hg	0.05 mg/m ³				
Antimony and its compounds, expressed as Sb					
Arsenic and its compounds, expressed as					

Lead and its compounds, expressed as Pb					
Chromium and its compounds, expressed as Cr	Total 0.5 mg/m ³				
Cobalt and its compounds, expressed as Co					
Copper and its compounds, expressed as Cu					
Manganese and its compounds, expressed as Mn					
Nickel and its compounds, expressed as Ni					
Vanadium and its compounds, expressed as V					
Average Values Over 6 – 8 Hours	Concentration				
Dioxins and furans	0.1 ng/m ³				
Average Value	Concentration ⁽³⁾				
	Daily Average Value	30 Min Average Value			
Carbon Monoxide	50 mg/m ³	100 mg/m ³			

- 1. Total dust emission may not exceed 150 mg/m³ as a half-hourly average under any circumstances
- 2. These values cover also the gaseous and vapour forms of the relevant heavy metals as well as their compounds
- Exemptions may be authorised for incineration plants using fluidised bed technology, provided that emission limit values do not exceed 100 mg/m³ as an hourly average value

Table 8.4 Process Emission Design Detail

Stack Reference	Stack Height (m)	Exit Diameter (m)	Cross- Sectional Area (m²)	Temp (K)	Volume Flow (Nm³/hr) ⁽¹⁾	Exit Velocity (m/sec actual) ⁽²⁾
Grate	70	2.30	4.15	408	211,000 – Maximum 158,250 – 75% of Maximum	19.9 14.95

- $1. \quad \text{Normalised to } 11\% \text{ } O_2, \text{dry, } 273\text{K}.$
- 2. Actual, 408K, 6.9% O₂, 16.9% H₂O

8.5 Potential Effects

The results from the detailed air dispersion modelling of the facility are summarised below. The modelling, undertaken using the USEPA regulatory model AERMOD, is discussed in detail in **Appendix 8.2**.

8.5.1 Do-Nothing Scenario

For the Do-Nothing scenario, the existing air quality emission sources contained within the area of the proposed development will remain in place. Therefore, the existing baseline air quality environment is not expected to change in the Do-Nothing scenario.

8.5.2 Construction Phase

The greatest potential impact on air quality during the construction phase of the proposed development is from construction dust emissions and the potential for nuisance dust. While construction dust tends to be deposited within 200m of a construction site, the majority of the deposition occurs within the first 50m. Most importantly, when the dust minimisation measures detailed in **Section 8.6.1** are implemented, fugitive emissions of dust from the site will be insignificant and pose no nuisance at nearby receptors.

8.5.3 Operational Phase

8.5.3.1 $NO_2 & NO_X$

NO₂ modelling results, using AERMOD, indicate that the ambient ground level concentrations will be below the relevant air quality standards for the protection of human health for nitrogen dioxide under both maximum and abnormal operation of the proposed development. Thus, no adverse effect on public health or the environment is envisaged to occur under these conditions at or beyond the proposed development boundary. Emissions at maximum operations lead to ambient NO₂ concentrations (including background concentrations) which are 18% of the maximum ambient 1-hour limit value (measured as a 99.97^{tho}%ile), 49% of the maximum ambient 24-hour limit value (measured as a 95.1^{tho}%ile) and 26% of the annual average limit value at the respective worst-case receptors.

The annual average NO_X concentration (including background concentration) will also be below the critical level for the protection of vegetation accounting for 35% of the annual limit value at the worst-case receptor in the region of the Lough Beg Proposed NHA and the Cork Harbour SPA.

8.5.3.2 SO₂, CO, PM₁₀ & PM_{2.5}

AERMOD modelling results indicate that ambient ground level concentrations will be below the relevant air quality standards for the protection of human health for sulphur dioxide, carbon monoxide and PM_{10} under maximum and abnormal operation of the proposed development. Results will also be below the air quality standard for $PM_{2.5}$ and the SO_2 critical level for the protection of vegetation under maximum and abnormal operation of the proposed development. Thus, no adverse effect on public health or the environment is envisaged to occur under these conditions at or beyond the proposed development boundary. Emissions at maximum operations equate to ambient concentrations (including background concentrations) ranging from 16% - 68% of the respective limit values at the worst-case receptors.

8.5.3.3 TOC, NH₃, HCl & HF

AERMOD modelling results indicate that the ambient ground level concentrations will be below the relevant air quality guidelines for the protection of human health for TOC (assumed pessimistically to consist solely of benzene), NH₃, HCl and HF under maximum and abnormal operation of the proposed development. Thus, no adverse effect on public health or the environment is envisaged to occur under these conditions at or beyond the proposed development boundary. Emissions at maximum operations equate to ambient concentrations (including background concentrations) for NH₃, HCl and TOC of only 1.2%, 11% and 31% respectively of the ambient limit values.

HF modelling results indicate that emissions at maximum operations equate to ambient HF concentrations (including background concentrations) which will be 1% of the maximum ambient 1-hour limit value and 2% of the annual limit value.

8.5.3.4 PCDD / PCDFs (Dioxins/Furans)

Currently, no internationally recognised ambient air quality concentration or deposition standards exist for PCDD/PCDFs (Dioxins/Furans). Both the USEPA and WHO recommended approach to assessing the risk to human health from Dioxins/Furans entails a detailed risk assessment analysis involving the determination of the effect of Dioxins/Furans in terms of the TDI (Tolerable Daily Intake) approach. The WHO currently proposes a maximum TDI of between 1-4 pgTEQ/kg of body weight per day.

Background levels of Dioxins/Furans occur everywhere and existing levels in the surrounding area have been extensively monitored as part of this study. Monitoring results indicate that the existing levels are similar to rural areas in the UK and Ireland. The additional contribution from the proposed development to levels of Dioxins/Furans is minor, with levels at the maximum off-site receptor to the south of the proposed development, under maximum and abnormal operation, accounting for only a small fraction of existing levels. Levels at the nearest residential receptor will also be minor, with the annual contribution from the proposed development accounting for less than 1% of the existing background concentration under maximum operating conditions.

8.5.3.5 PAHs

PAHs modelling results, based on AERMOD, indicate that the ambient ground level concentrations will be below the relevant air quality limit value for the protection of human health under maximum and abnormal operation of the proposed development. Thus, no adverse effect on public health or the environment is envisaged to occur under these conditions at or beyond the proposed development boundary. Emissions at maximum operations equate to ambient benzo[a]pyrene concentrations (excluding background concentrations) which are 0.1% of the EU annual average limit value at the worst-case receptor.

8.5.3.6 Hg

Mercury (Hg) modelling results, based on AERMOD, indicate that the ambient ground level concentrations will be below the relevant air quality standards for the protection of human health under maximum and abnormal operation of the proposed development. Thus, no adverse effect on public health or the environment is envisaged to occur under these conditions at or beyond the proposed development boundary. Emissions at maximum operations equate to ambient mercury concentrations (including background concentrations) which are only 1% of the annual average limit value at the worst-case receptor.

8.5.3.7 *Cd and Tl*

AERMOD modelling results indicate that the ambient ground level concentrations will be below the relevant air quality standard for the protection of human health for cadmium under maximum and abnormal operation from the proposed development. Emissions at maximum levels equate to ambient Cd and Tl concentrations (including background concentrations) which are 28% of the EU annual limit value for Cd close to the proposed development boundary (the comparison is made with the Cd limit value as this is more stringent than that for Tl).

8.5.3.8 Sum of As, Sb, Pb, Cr, Co, Cu, Ni, Mn and V

AERMOD modelling results indicate that the ambient ground level concentrations will be below the relevant air quality standards for the protection of human health for arsenic (As), nickel (Ni) and vanadium (V) (the metals with the most stringent limit values) under maximum and abnormal operation emissions from the facility (based on the ratio of metals measured at a Waste to Energy facility in Carranstown, County Meath). Thus, no adverse effect on public health or the environment is envisaged to occur under these conditions at or beyond the proposed development boundary. Ambient concentrations have been compared to the annual limit value for As and Ni and the maximum 1-hour limit value for V as these represent the most stringent limit values for the suite of metals. Emissions at maximum operations equate to ambient As and Ni concentrations (including background concentrations) which are 17% and 48% of the EU annual limit value respectively at the worst-case receptor whilst emissions at maximum operations equate to ambient V concentrations (including background concentrations) which are only 0.2% of the maximum 1-hour limit value at the worst-case receptor. Emissions under abnormal operations equate to ambient As and Ni concentrations (including background concentrations) which are 24% and 53% of the annual limit value respectively at the worst-case receptor whilst emissions at maximum operations equate to ambient V concentrations (including background concentrations) which are 0.2% of the maximum 1-hour limit value at the worst-case receptor.

8.5.3.9 National Emissions Ceiling

A comparison of the proposed development's operations with the obligations under the National Emissions Ceiling Directive indicates the effect of the proposed development is to increase SO_2 levels by 0.83% of the ceiling levels to be complied with in 2030, NO_X levels by 0.72% of the ceiling levels, VOC levels will be increased by 0.02% of the ceiling limits, NH_3 levels will be increased by 0.02% of the ceiling limits whilst $PM_{2.5}$ levels will be increased by 0.16% of the ceiling limits.

8.5.3.10 AERMOD Modelling Summary

AERMOD modelling results indicate that the ambient ground level concentrations will be below the relevant air quality standards or guidelines for the protection of human health for all parameters under both the maximum and abnormal operation scenarios. The modelling results indicate that the maximum long-term ground level concentration occurs to the south of the development's boundary.

Maximum operations are based on the emission concentrations outlined in EU Directive 2010/75/EU. Abnormal operations are based on the emission concentrations outlined in **Section 8.1.1**.

An appropriate stack height has been selected to ensure that ambient air quality standards for the protection of human health will not be approached even under abnormal operating scenarios. Air dispersion modelling was undertaken in an iterative fashion in order to determine the stack height for the proposed development. The air dispersion modelling study found that a stack height of 70 metres was appropriate.

The spatial effect of the proposed development is limited with concentrations falling off rapidly away from the location of the maximum ambient ground level concentration. For example, the short-term concentrations due to process emissions at the nearest residential receptor will be less than 10% of the short-term ambient air quality limit values. The annual average concentration results in an even more dramatic decrease in maximum concentration away from the proposed development with concentrations from emissions at the proposed development accounting for less than 3% of the limit value (not including background concentrations) at worst case sensitive receptors near the proposed development.

In the surrounding areas of Cobh, Carrigaline and Monkstown, levels are significantly lower than most background sources with the concentrations from emissions at the proposed development accounting for less than 1% of the annual limit values for the protection of human health for all pollutants under maximum operations of the proposed development.

In terms of Ireland's obligations under the Gothenburg Protocol and the POPs Convention, the effect of the facility will not be significant.

8.6 Mitigation and Monitoring Measures

In order to sufficiently ameliorate any potential negative effects on the air environment, a schedule of measures has been formulated for both construction and operational phases associated with the proposed development.

8.6.1 Construction Phase

8.6.1.1 Mitigation Measures

The potential for dust to be emitted depends on the type of construction activity being carried out in conjunction with environmental factors including levels of rainfall, wind speeds and wind direction. The potential for effect from dust depends on the distance to potentially sensitive locations and whether the wind can carry the dust to these locations. The majority of dust produced will be deposited close to the generated source. A series of measures, based on best practice⁽⁷⁾, have been formulated (see below) for the construction phase of the project, as construction activities are likely to generate some dust emissions.

In order to ensure that no dust nuisance occurs, the following dust control measures will be implemented.

- Hard surface roads will be swept to remove mud and aggregate materials from their surface while any un-surfaced roads will be restricted to essential site traffic only apart from the contractor's car park which will be hardcore only
- Furthermore, any road that has the potential to give rise to fugitive dust must be regularly watered, as appropriate, during dry and/or windy conditions
- Vehicles using site roads will have their speed restricted, and this speed restriction must be enforced rigidly. On any un-surfaced site road, this will be 20 km/h, and on hard surfaced roads as site management dictates
- Vehicles delivering material with dust potential (soil, aggregates) will be enclosed or covered with tarpaulin at all times to restrict the escape of dust
- Wheel washing facilities will be provided for vehicle exiting site in order to ensure that mud and other wastes are not tracked onto public roads
- Public roads outside the site will be regularly inspected for cleanliness, and cleaned as necessary

- Material handling systems and site stockpiling of materials will be designed and laid out to minimise exposure to wind. Water misting or sprays will be used as required if particularly dusty activities are necessary during dry or windy periods
- During movement of materials both on and off-site, trucks will be stringently covered with tarpaulin at all times. Before entrance onto public roads, trucks will be adequately inspected to ensure no potential for dust emissions

8.6.1.2 *Monitoring Measures*

At all times, these procedures will be strictly monitored and assessed by the Site Environmental Manager (SEM) as outlined in the Construction Environmental Management Plan (CEMP) in **Appendix 5.1** of this EIS. Boundary monitoring of dust emissions will be undertaken using Bergerhoff dust gauges at a number of locations near sensitive receptors with results compared to the TA Luft dust deposition level of 350 mg/(m²*day) as an annual average. In the event of significant dust deposition occurring outside the proposed development site boundary, movements of materials likely to raise dust would be curtailed and satisfactory procedures implemented to rectify the problem before the resumption of construction operations.

8.6.2 Operational Phase

8.6.2.1 Mitigation Measures

A number of measures have been incorporated into the design of the proposed development to ensure that emissions from the plant do not exceed regulatory emission limit values as outlined in Industrial Emissions Directive 2010/75/EU. In addition, the stack height has been designed in an iterative fashion in order to ensure that ambient ground level concentrations are minimised.

Air modelling predictions indicate that ambient air quality levels from the proposed development will be within the ambient air quality standards at all locations beyond the proposed development site boundary, based on maximum and abnormal operating conditions. Thus, no specific additional mitigation measures are required during the operational phase of the proposed development.

8.6.2.2 *Monitoring Measures*

Monitoring of air emissions from the main stack will be undertaken on a scheduled basis. The specific monitoring requirements will be specified by the EPA in the Industrial Emissions licence which will be required prior to operations commencing onsite.

8.7 Residual Effects

This section summarises the likely air quality effect associated with the proposed development, taking into account the mitigation measures.

8.7.1 Construction Phase

During the construction phase of the proposed development, there may be some effect on nearby properties due to dust emissions from the construction site and other activities. Air emissions may also result from idling construction vehicles and the use of mobile generators. However, due to the formulation of an effective dust and air quality minimisation plan, it is considered that the residual effect will be short-term and slight.

8.7.1.1 Effect on Human Health

Best practice mitigation measures are proposed for the construction phase of the proposed development which will focus on the pro-active control of dust and other air pollutants to minimise generation of emissions at source. The mitigation measures that will be put in place during construction of the proposed development will ensure that the effect of the proposed development complies with all EU ambient air quality legislative limit values which are based on the protection of human health. Therefore, the effect of construction of the proposed development is likely to be short-term and imperceptible with respect to human health.

8.7.2 Operational Phase

Based on the results of air dispersion modelling of process emissions, the air quality effect of the proposed development will not be significant.

8.7.2.1 Effect on Human Health

Air dispersion modelling was undertaken to assess the effect of the proposed development with reference to EU ambient air quality standards which are based on the protection of human health. As demonstrated by the dispersion modelling results, emissions from the proposed development are compliant with all National and EU ambient air quality limit values and, therefore, will not result in a significant effect on human health. **Chapter 6 Population and Human Health (Section 6.5)** confirms that there will not be a significant effect on human health due to air emissions from the proposed development. Conservative assumptions were made when determining the input data for the air modelling assessment and the approach used in the study leads to an over-estimation of the actual levels that will arise. In relation to the spatial extent of air quality effects from the proposed development site, ambient concentrations will decrease significantly with distance from the proposed development site boundary.

8.8 Cumulative Effects

In terms of air quality, the EPA guidance document "Air Dispersion Modelling from Industrial Installations" (EPA, 2020) was consulted in order to determine which current and proposed developments should be considered in the air quality cumulative assessment. The potential for cumulative air quality effects as a result of the construction and operation of the proposed development and the following projects has been evaluated on this basis:

- Port of Cork a new vehicular entrance off the L2545
- Port of Cork Construction of the remaining phases of a 200m Container/Multipurpose Berth, Dredging of the seabed to a level of -13.0 m Chart Datum (CD), Ringaskiddy West (Deepwater Berth Extension), A new 182m extension to the existing Deepwater Berth (DWB)
- M28 Cork to Ringaskiddy Motorway Scheme Under construction
- Janssen Sciences Ireland Ltd Permission for an upgrade and extension to the existing biomedicines manufacturing facility
- Pfizer Ireland Pharmaceuticals Permission for construction of Bld. 124 Site Lab Building
- ESB Development is sought for a period of 10 years at a 10.22 hectares site within ESB Aghada Generating Station consisting of 1) Construction/installation of an open cycle gas turbine (OCGT) generating unit and associated plant and equipment

Following on from this evaluation, as outlined in **Section 8.2.4**, a detailed cumulative assessment of the proposed development and the relevant industrial emission sources has been carried out using the methodology outlined by the USEPA. The effect of relevant nearby air emission points sources (Janssen Sciences Ireland, Hovione Cork, Thermo Fisher Scientific Ireland Ltd, ESB Aghada, Recordati Ltd, Sterling Pharma Ringaskiddy Ltd, Pfizer Ireland Pharmaceuticals and BGE Whitegate) have been modelled in detailed as outlined in **Appendix 8.4**. The conclusion of the cumulative assessment study is that there is no significant overlap between the various emission sources and the proposed development and that all air pollutants emitted from the will remain in compliance with the ambient air quality standards.

Additionally, cumulative air modelling of road traffic emissions associated with the proposed development has also been undertaken and added to the existing worst-case background pollutant levels. Cumulative effects due to the other relevant projects as outlined above have been included in both the "do-nothing" and "do-something" scenario as outlined in **Appendix 8.3**.

8.9 References

USEPA (2025) Guidelines on Air Quality Models, Appendix W to Part 51, 40 CFR Ch.1

USEPA (2004) Minimum Meteorological Data Requirements For AERMOD – Study & Recommendations, 1998, USEPA

USEPA (2024) AERMOD Description of Model Formulation

Auer Jr, (1978) Correlation of Land Use and Cover with Meteorological Anomalies, Journal of Applied Meteorology 17(5):636-643

EPA (2020) Air Dispersion Modelling Guidance Note (AG4) 2020

UK DEFRA (2016) Part IV of the Environment Act 1995: Local Air Quality Management, LAQM.TG(16)

IAQM (2016) Guidance on the Assessment of Dust from Demolition and Construction